Highly Enhanced Raman Scattering of Graphene using Plasmonic Nano-Structure

نویسندگان

  • M. Khorasaninejad
  • S. M. Raeis-Zadeh
  • S. Jafarlou
  • M. J. Wesolowski
  • C. R. Daley
  • J. B. Flannery
  • J. Forrest
  • S. Safavi-Naeini
  • S. S. Saini
چکیده

Highly enhanced Raman scattering of graphene on a plasmonic nano-structure platform is demonstrated. The plasmonic platform consists of silver nano-structures in a periodic array on top of a gold mirror. The gold mirror is used to move the hot spot to the top surface of the silver nano-structures, where the graphene is located. Two different nano-structures, ring and crescent, are studied. The actual Raman intensity is enhanced by a factor of 890 for the G-peak of graphene on crescents as compared to graphene on a silicon dioxide surface. The highest enhancement is observed for the G-peak as compared to the 2D-peak. The results are quantitatively well-matched with a theoretical model using an overlap integral of incident electric field intensities with the corresponding intensities of Raman signals at the G- and 2D-peaks. The interaction of light with nano-structures is simulated using finite element method (FEM).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.

Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper review...

متن کامل

Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene.

We characterize plasmonic enhancement in a hotspot between two Au nanodisks using Raman scattering of graphene. Single layer graphene is suspended across the dimer cavity and provides an ideal two-dimensional test material for the local near-field distribution. We detect a Raman enhancement of the order of 10(3) originating from the cavity. Spatially resolved Raman measurements reveal a near-fi...

متن کامل

Raman enhancement on a broadband meta-surface.

Plasmonic metamaterials allow confinement of light to deep subwavelength dimensions, while allowing for the tailoring of dispersion and electromagnetic mode density to enhance specific photonic properties. Optical resonances of plasmonic molecules have been extensively investigated; however, benefits of strong coupling of dimers have been overlooked. Here, we construct a plasmonic meta-surface ...

متن کامل

Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.

Although it is now well recognized that plasmonic gold/silver nanoparticle based aggregates having electromagnetic hot spots are responsible for high sensitivity in surface-enhanced Raman spectroscopy (SERS), the high yield and reproducible production of such nanostructures are challenging and limit their practical application. Here we show a graphene oxide (GO) based approach in generating sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013